Exercise 3

Prove that the iteration in the Babylonian method above converges quadratically to the square root of x. In particular, show that the error $\epsilon_{n}=\frac{x_{n}}{\sqrt{x}}-1$ satisfies

$$
\epsilon_{n+1}=\frac{\epsilon_{n}^{2}}{2\left(\epsilon_{n}+1\right)}
$$

From this, we get that $\epsilon_{n} \geq 0$ for $n \geq 1$, and so

$$
\epsilon_{n+1} \leq \frac{1}{2} \min \left\{\epsilon_{n}^{2}, \epsilon_{n}\right\}
$$

Why does the inequality above guarantee convergence (i.e., that $\epsilon_{n} \rightarrow 0$ as $\left.n \rightarrow \infty\right)$?
Proof: We first show that

$$
\epsilon_{n+1}=\frac{\epsilon_{n}^{2}}{2\left(\epsilon_{n}+1\right)}
$$

To this end, we first right down the right hand side of the equation:

$$
\begin{aligned}
\frac{\epsilon_{n}^{2}}{2\left(\epsilon_{n}+1\right)} & =\frac{\left(\frac{x_{n}}{\sqrt{x}}-1\right)^{2}}{2\left(\frac{x_{n}}{\sqrt{x}}-1+1\right)} \\
& =\frac{\left(\frac{x_{n}}{\sqrt{x}}-1\right)^{2}}{\frac{2 x_{n}}{\sqrt{x}}} \\
& =\frac{x_{n}}{2 \sqrt{x}}-1+\frac{\sqrt{x}}{2 x_{n}}
\end{aligned}
$$

Moreover, we notice that

$$
\begin{aligned}
\epsilon_{n+1} & =\frac{x_{n+1}}{\sqrt{x}}-1 \\
& =\frac{\frac{1}{2}\left(x_{n}+\frac{x}{x_{n}}\right)}{\sqrt{x}}-1 \\
& =\frac{\frac{1}{2} x_{n}+\frac{x}{2 x_{n}}}{\sqrt{x}}-1 \\
& =\frac{x_{n}}{2 \sqrt{x}}+\frac{\sqrt{x}}{2 x_{n}}-1 .
\end{aligned}
$$

Therefore, we indeed have the right hand side to be equal to the left hand side. Note that we have $x_{0}=x>0$ by definition (From Exercise 2). Therefore, we must have $\epsilon_{n} \geq 0$ for all $n \geq 1$. Moreover, we note that

$$
\epsilon_{n+1} \leq \frac{1}{2} \min \left\{\epsilon_{n}^{2}, \epsilon_{n}\right\}
$$

This inequality can be derived from a simple case discussion. Now we shall prove that the tolerance term $\epsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$. To this end, we note that we have $\epsilon_{n} \geq 0$ for all $n \geq 1$. Moreover, we have $\epsilon_{n+1} \leq \frac{\epsilon_{n}}{2} \leq \epsilon_{n}$ for all n. In particular, this means that we have a decreasing sequence $\left\{\epsilon_{n}\right\}_{n=1}^{\infty}$. Therefore, we must have the sequence to converge by the monotone convergence theorem. Now we ask the question, where the sequence converges to. To this end, we let $\epsilon=\lim _{n \rightarrow \infty} \epsilon_{n}$. Therefore, we must have

$$
\begin{aligned}
\epsilon & =\frac{\epsilon^{2}}{2(\epsilon+1)} \\
2 \epsilon^{2}+2 \epsilon & =\epsilon^{2} \\
\epsilon^{2}+2 \epsilon & =0 \\
\epsilon(\epsilon+2) & =0
\end{aligned}
$$

Therefore, we must have $\epsilon=0$ or $\epsilon=-2$. However, we have $\epsilon \geq 0$. Therefore, we must have

$$
\epsilon=\lim _{n \rightarrow \infty} \epsilon_{n}=0
$$

